Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Environmental Science & Technology Letters ; : 6, 2022.
Article in English | Web of Science | ID: covidwho-1633372

ABSTRACT

Wastewater-based epidemiology (WBE) uses concentrations of infectious agent targets in wastewater to infer infection trends in the contributing community. To date, WBE has been used to gain insight into infection trends of gastrointestinal diseases, but its application to respiratory diseases has been limited. Here, we report that respiratory syncytial virus (RSV) genomic ribonucleic acid can be detected in wastewater settled solids at two publicly owned treatment works. We further show that its concentration in settled solids is strongly associated (Kendalls tau = 0.65-0.77, p < 10(-7)) with clinical positivity rates for RSV at sentinel laboratories across the state in 2021, a year with anomalous seasonal trends of RSV disease. Given that RSV infections have similar clinical presentations to COVID-19, can be life threatening for some, and immunoprophylaxis distribution for vulnerable people is based on outbreak identification, WBE represents an important tool to augment current RSV surveillance and public health response efforts.

3.
Environmental Science and Technology Letters ; 2021.
Article in English | Scopus | ID: covidwho-1225479

ABSTRACT

Published and unpublished reports show that SARS-CoV-2 RNA in publicly owned treatment work (POTW) wastewater influent and solids is associated with new COVID-19 cases or incidence in associated sewersheds, but methods for comparing data collected from diverse POTWs to infer information about the relative incidence of laboratory-confirmed COVID-19 cases, and scaling to allow such comparisons, have not been previously established. Here, we show that SARS-CoV-2 N1 and N2 concentrations in solids normalized by concentrations of PMMoV RNA in solids can be used to compare incidence of laboratory confirmed new COVID-19 cases across POTWs. Using data collected at seven POTWs along the United States West Coast, Midwest, and East Coast serving ∼3% of the U.S. population (9 million people), we show that a 1 log change in N gene/PMMoV is associated with a 0.24 (range 0.19 to 0.29) log10 change in incidence of laboratory confirmed COVID-19. Scaling of N1 and N2 by PMMoV is consistent, conceptually, with a mass balance model relating SARS-CoV-2 RNA to the number of infected individuals shedding virus in their stool. This information should support the application of wastewater-based epidemiology to inform the response to the COVID-19 pandemic and potentially future viral pandemics. ©

SELECTION OF CITATIONS
SEARCH DETAIL